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ABSTRACT 
Hardware Trojan horses (HTHs) are the malicious altering of 
hardware specification or implementation in such a way that its 
functionality is altered under a set of conditions defined by the 
attacker. There are numerous HTHs sources including untrusted 
foundries, synthesis tools and libraries, testing and verification 
tools, and configuration scripts. HTH attacks can greatly comprise 
security and privacy of hardware users either directly or through 
interaction with pertinent systems and application software or 
with data. However, while there has been a huge research and 
development effort for detecting software Trojan horses, 
surprisingly, HTHs are rarely addressed. HTH detection is a 
particularly difficult task in modern and pending deep submicron 
technologies due to intrinsic manufacturing variability. 
 
Our goal is to provide an impetus for HTH research by creating a 
generic and easily applicable set of techniques and tools for HTH 
detection. We start by introducing a technique for recovery of 
characteristics of gates in terms of leakage current, switching 
power, and delay, which utilizes linear programming to solve a 
system of equations created using non-destructive measurements 
of power or delays. This technique is combined with constraint 
manipulation techniques to detect embedded HTHs. The 
effectiveness of the approach is demonstrated on a number of 
standard benchmarks. 

Categories and Subject Descriptors 
B.7.m [Hardware]: Integrated Circuits – Miscellaneous.  

General Terms 
Experimentation, Security 

Keywords 
Hardware Trojan horses, gate-level characterization, linear 
programming, manufacturing variability. 

 

1. INTRODUCTION 
Since semiconductor manufacturing demands a large capital 
investment, the role of contract foundries has dramatically grown, 
increasing exposure to theft of masks, attacks by insertion of 
malicious circuitry, and unauthorized excess fabrication [1]. The 
development of hardware security techniques is exceptionally 
difficult due to reasons that include limited controllability and 
observability (50,000+ gates for each I/O pin in modern designs) 
[7], large size and complexity (the newest Intel processor has 
2.06B transistors), variety of components (e.g., clock, clock 
distribution interconnect, and finite state machine), unavoidable 
design bugs, possibility of attacks by non-physically connected 
circuitry (e.g., using crosstalk and substrate noise), many potential 
attack sources (e.g. hardware IP providers, CAD tools, and 
foundries), potentially sophisticated and well-funded attackers 
(foundries and foreign governments), and manufacturing 
variability that makes each IC coming from the same design 
unique [5][11]. 
 
There are several broad types of malicious hardware attacks that 
we consider. The first is gate resizing, where the attacker 
intentionally changes the sizing factors of one or more gates in 
such a way that the circuit passes all standard timing test, but its 
timing for a certain inputs is incorrect or its switching or leakage 
power are globally or locally increased drastically. Note that 
many other gate sizing attacks can be envisioned, including one 
where the sizes of the gates are altered in such a way that the 
calculation of internal signals is facilitated through altered timing 
or switching power. In the second type of attack, the adversary 
adds one or more gates so that the functionality of the design is 
altered. It is important to observe that the gates can be added so 
that no timing path between primary inputs and flip-flops (FFs) 
and primary outputs and FFs is altered. However, leakage power 
is always altered because even if the attacker gates the added 
circuitry, the gating requires an additional gate. Our HTH 
detection approach is generic in a sense that it can easily be 
retargeted to other circuit components, such as interconnect by 
considering more comprehensive timing and/or power models. 
 
The main technical obstacle to HTH detection is manufacturing 
variability, which may have a very significant impact on timing 
and power characteristics. Its difficulty is often compounded by 
low controllability and observability. Our approach is non-
destructive and aims to minimize measurement test time. 
Currently, we target an off-line scenario, but the approach can be 
applied in the case of timing on-line. Even power-based 
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techniques can be applied on-line by measuring the change of 
timing characteristics due to rise in temperature. However, for the 
sake of focus, we restrict our attention to the off-line case. 
 
The basis for our approach is gate-level characterization using a 
set of timing and/or power measurements. The measurements are 
treated as a set of linear equations with imposed measurements 
errors. They are processed using linear programming (LP). When 
we address detection of additional ghost circuitry using LP, we 
impose additional constraints on our LP formulation in such a 
way that the results indicate what circuitry is added and where. 
Essentially, we use LP to ask if the characterization of gates is 
significantly more consistent under the assumption of added 
circuitry. 
 
Finally, it is important to observe that gate-level timing 
characterization has other numerous applications beyond security. 
For example, it addresses in an elegant way static timing analysis 
and greatly facilitates dynamic timing analysis. It can be also used 
for tailoring post-silicon optimization. For example leakage power 
vectors can be calculated much more precisely when the gate 
sizing information is available. Also, it can be used for 
inexpensive silicon process characterization. 

2. RELATED WORK 
Most available hardware security, as well as hardware-based 
secure system methods, are based upon implementations of digital 
cryptography protocols [11]. In traditional cryptographic 
protocols, security is provided by trapdoor mathematical 
functions and digital keys, which make the protocols resilient to 
algorithmic attacks [17]. However, digital hardware security keys 
can be attacked in a number of ways including side-channel, 
electromigration, imaging and fault injection [5][6]. 
To address the above shortcomings and vulnerabilities, a new 
generation of security techniques based on manufacturing 
variability (MV) has been developed [14] [15][21]. With scaling 
of feature sizes, the physical limits of the devices are reached and 
uncertainty in the device size increases [7]. Variations in 
transistor feature sizes and thus, in gate characteristics are 
inevitable (e.g., delay or power). In present and pending 
technologies, the variation is large compared to the device 
dimensions. As a result, VLSI circuits exhibit a high variability in 
both delay and power consumption. 
In contrast, the proposed new scheme does not require storing of 
secret information, does not require any exchange of secret 
information, and is much faster and less power expensive. Most 
available hardware security, as well as hardware-based secure 
system methods are based upon implementations of digital 
cryptography protocols [6]. In traditional cryptographic protocols, 
security is provided by trapdoor mathematical functions and 
digital keys, which make the protocols resilient to algorithmic 
attacks [10]. However, digital hardware security keys can be 
attacked in a number of ways including side-channel, 
electromigration, imaging and fault injection [3][4]. 
 
To address the above shortcomings and vulnerabilities, a new 
generation of security techniques based on manufacturing 
variability (MV) has been developed [8][9][12][15][16]. Note that 
the manufacturing variations are because of the intense industrial 
CMOS feature scaling. With scaling of feature sizes, the physical 

limits of the devices are reached and uncertainty in the device size 
increases [5]. Variations in transistor feature sizes and thus, in 
gate characteristics are inevitable (e.g., delay or power). In 
present and pending technologies, the variation is large compared 
to the device dimensions. As a result, VLSI circuits exhibit a high 
variability in both delay and power consumption. 
 

3. TROJAN HORSE (HTH) ATTACK 
3.1 Motivation 
A Hardware Trojan Horse (HTH) is an intentional hardware 
alteration of the design specification or of the corresponding 
implementation. These alterations only affect the circuit’s 
functionality in a few specific circumstances and are hidden 
otherwise. HTHs are more difficult to detect, diagnose, and mask 
than design bugs or manufacturing faults since they are 
intentionally implanted to be unperceivable by the current 
debugging and testing methodologies and tools. The vast number 
of possibilities for implementing HTHs further complicates their 
detection. 
 
Diagnosis of HTHs can be especially intricate since a large 
number of Trojans may be present simultaneously in an IC. In 
addition, HTHs are not necessarily present in all ICs coming from 
a design. Since HTHs are embedded within the circuit and are 
active only under certain, very rare conditions, detection methods 
must be complex. In addition, the introduction of new 
technologies, ultra large scale integration, and intrinsic MV of 
deep submicron technologies also increase the difficulty of HTH 
uncovering. Implementation of HTHs by the attackers and its 
detection/prevention by the designers is a battle that is only 
bounded by the creativity, knowledge, and skills of each side. 
Although the IC layout data is shared with the foundry, the 
designers and the tool developers have the advantage of making 
the first and last move. Thus, they can construct their design to be 
the least suitable to HTH placement, and they can also choose the 
type of post-silicon HTH detection procedure.  

3.2 Example of HTH Attacks 
Here we present specific HTH, in an attempt to describe the 
nature of HTH attacks in general. A simple, yet powerful HTH 
attack is presented in Figure 1, which shows how ghost circuitry 
can be activated in a cell phone when specific inputs or data are 
detected at specific memory locations. The unshaded portion of 
the circuit represents the HTH circuitry when it is activated by a 
HTH caller ID number. Upon activation, the attacker bitstream 
(ABS) is activated and the initial cell phone design is corrupted. 
In this example, HTHs will either cause the cell phones to 
malfunction or cause confidential information to be leaked. 
Important information can be disclosed after activation of the 
HTH. The exploited phone can automatically dial a hidden spy 
third party when certain numbers are dialed. Ghost circuitry 
(HTH) may be difficult to identify by traditional timing/power 
analysis techniques. To avoid timing analysis-based detection, an 
attacker only needs to ensure that no path delays between the 
inputs to flip-flops (FFs) or between the outputs to FFs are 
increased. Also, the switching power can remain stable until the 
trigger of the attacker’s caller ID activates the HTH. 
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Figure 1. Example of a cell phone HTH 

 
The crosstalk caused by HTH in Figure 2 is particularly difficult 
to detect since no physical connections between the ghost and the 
affected circuitry is necessary. Our SPICE simulations of wire 
crosstalk demonstrate that for two wires closer than 0.1 
micrometers, the affected wire’s delay can increase by more than 
four times, as shown in Table 1. A prevention method, during the 
place and route phase, is to carefully place the nonfunctional 
interconnects that fill the empty spaces to facilitate crosstalk. 
 

 
Figure 2. Example of a wire crosstalk HTH 

 
Table 1. Interconnect capacitance vs. distance of the HTH 

wire  
Distance 0.1 0.2 0.5 1.0 

Increase (%) 420 105 34 3.2 

 
Finally, consider an example from photonic crystals-based on-
chip optical interconnects, one the future, potentially pervasive IC 
technologies. Due to its bandwidth, low power consumption, high 
speed, feature size compatibility, and easy transduction to and 
from electric signals, photonic crystals-based on-chip optical 
interconnects are one of the leading candidates for 
implementation of global on-chip interconnects [13]. However, if 
an attacker places a single transducer on the optical fiber, data 

being communicated on the high bandwidth channel can be 
interfered/obtained with no timing or electromagnetic impact. 

3.3 HTH Classification 
In the modern design flows of ASICs, ASIPs, and 
microprocessors, most of the phases may be potentially untrusted 
[1]. CAD tools, hardware intellectual properties (IPs), design 
libraries, testing and verification tools, untrusted foundries, 
untrusted testing facilities, and even untrusted designers in large 
design teams are all possible malicious threats. With field 
programmable gate arrays (FPGAs), the situation is even worse 
because the software and configuration files can also be attacked.  
 
Even though the number and types of potential hardware attacks 
are essentially unlimited, we currently classify HTH attacks into 
the seven following categories: (i) damage objectives; (ii) 
components and mechanisms of the attack; (iii) components of the 
IC under attack; (iv) duration and initiation mechanisms; (v) 
design phase implantation and usage phase; (vi) optimization 
level; and (vii) customization level. 
 
The HTH attackers desiderata may include alteration of the 
computed results, slowing the IC, increasing the power 
consumption, releasing confidential data, and facilitating side-
channel attacks by making the gates’ power consumptions 
observable at output. Attackers can employ various techniques 
including excessive switching, interconnect resizing, and 
substrate noise addition. Components, such as gates, clocks, and 
memory are vulnerable to physical attacks. Attacks may be 
randomly or actively initiated, e.g., event triggered. The impact 
may be temporary/permanent or recoverable/unrecoverable. The 
effectiveness and the detection difficulty of attacks can be 
quantitatively optimized. The attack may be on a specific weak IC 
component or on a predetermined set of components. For 
example, incorrectly sized gates are very slow on the design’s 
critical path. Sizing variations caused by MV in ICs may be 
exploited for this attack. Unfortunately, the broad spectrum of 
possible attacks prevents the development of universally effective 
defense and protection measures. To mitigate this problem, our 
research work develops generic hardware security techniques that 
can easily be retargeted to new tasks. 
 
We focus on detecting the differences between the taped-out 
chip’s characteristics and post-silicon tests. We also address the 
more difficult HTH discovery problems where the malware is 
implanted within the hardware intellectual property (IP), cell and 
module libraries, CAD tools, and FPGA configuration software.  

3.4 Global Flow 
To carry out HTH detection, we first carry out gate-level 
characterization, by using non-destructive leakage power and 
timing delay measurements to create linear programs. Once, the 
scaling factor of all or most of the gates in the IC have been 
approximated, then we are able to carry out a suite of statistical 
techniques for determining the presence of HTHs. 

4. GATE-LEVEL CHARACTERIZATION  
Gate-level characterization (GLC) aims to recover the post-silicon 
and unique properties of each IC in the presence of manufacturing 
variability. GLC calculates the relevant characteristics of each 
gate of the design using a limited number of nondestructive 
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measurements. We currently target delay, switching power, and 
leakage measurements and use GLC on combinatorial gates. 
However, other options such temperature and response to 
radiation may be also used for this approach. Even though we 
currently consider only combinatorial gates, one can generalize 
our techniques and easily apply our approach to sequential 
elements and interconnects. Due to space limitations and for the 
sake of clarity, we discuss the simple structure of GLC applied to 
leakage power, in this section. The key observations are that each 
gate consumes an energy that is proportional to its manufacturing 
variability scaling factor, si. Each gate gi depends on its input. 
Table 2 demonstrates this for a two input NAND gate for 90 
nanometer technologies. 

 
Table 2. Leakage current for different inputs 

Input Vector 00 01 10 11 

NAND-2 Leakage 0.776 10.39 4.137 15.15 

 
GLC leakage characterization can be formulated as a set of linear 
equations. We assume that the design structure is known. Given 
an IC with n gates and m input pins, K different input vectors can 
be applied (K << 2m). The total leakage current is measured for 
each input vector. The goal is to find the scaling (sizing) factor for 
each gate’s leakage. The stated problem is an over-constrained 
system of linear equations. Each equation has the form: 

�
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k

nom
jkj IIs
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,

ˆ  

where  is the nominal leakage power for gate j for the input 

vector k,  is the total measured leakage current for the k-th 
input that is the sum of the correct value and a measurement error. 
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Depending on the choice of optimization objective function, the 
above problem can be stated in a linear, convex, or nonlinear 
program format. First, each equation is transformed into a 
constraint where the difference of the left and the right side of 
equation is less than |�k| for the k-th equation. The objective is to 
minimize an appropriate error norm defined over the K error 

terms, �k’s, e.g., the l1 error norm is | , that can be 

linearly stated by a set of auxiliary variables �k as  
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The stated system of equations can be optimally solved using 
linear programming. The relative advantages of linear, convex, 
and nonlinear programs are that they provide a fine trade-off 
between accuracy, run time, and modeling flexibility. While 
linear programming (LP) is fast, it assumes piece-wise linear error 
models. On the other hand, while non-linear programming is slow 
and has potential convergence problems, it can fit nonlinear error 
norms and, more importantly, handle non-linear scaling and 
leakage power models. There are two major potential difficulties 
with solving the system of equations with linear, convex, or non-
linear programs. The first is that two or more scaling variables 

can be correlated in all equations and thus one cannot find their 
actual values. The second is that the large circuits cannot be 
solved in a reasonable amount of time. 
 
To resolve the above concerns and also to address several others, 
we created a more elaborate GLC flow. Our current GLC flow has 
five phases that are embedded within a loop that terminates once 
the user defined accuracy criteria is satisfied or the runtime limit 
is reached. The five phases are:  
(i) measurement organization;  
(ii) equation analysis and selection;  
(iii) solving system of equations;  
(iv) results post-processing;  
and (v) results validation.  
 
First, we select the input vectors. In the case of delay 
measurements, we also decide on relative input arrival times. 
Second, we analyze the equations (constraints) that maximize the 
corresponding matrix rank to solve for the maximal number of 
scaling variables in a numerically stable manner. Third, we 
derived several heuristics for the task, which we use. Fourth, after 
the equations are solved for different input vectors, we combine 
their solutions to minimize the probability of large errors. Finally, 
learn-and-test and resubstitution statistical validation techniques 
are used to estimate bounds for the calculated scaling factors. 

4.1 Gate-Level Characterization using Linear 
Programming (LP) 
In evaluating the LP formulation for gate-level characterization, 
we studied three properties of input variables: (i) distribution 
type, (ii) the mean of the absolute measurement errors, and (iii) 
the number of constraints.  
 

0

2

4

6

8

10

12

200 1000 2000 4000
Number of Constraints

C
ha

ra
ct

er
iz

at
io

n 
A

cc
ur

ac
y:

 A
ve

ra
ge

 %
 

di
ff

er
en

ce
 w

ith
 a

ct
ua

l s
ca

lin
g 

fa
ct

or
s

 
Figure 3. Accuracy of the gate-level characterization vs. the 
relative measurement error (%) for different number of 
constraints (equations) on c432 benchmarks 
 
In Figure 3, we evaluate the accuracy of the gate characterization 
procedure versus the uniform measurement error and the number 
of constraints (NC) the c432 benchmark. The number of 
constraints refers to the number of equations that we used in the 
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LP, corresponding to the number of different inputs used to 
measure the leakage. We see that even though increasing the NC 
on average improves the accuracy, there exists some cases where 
with NC=2000 there is more accuracy than with NC=4000, 
because of the random variations in the subset of used equations. 
 
Table 3 presents the results for LP-based GLC using leakage 
power, delay, and both leakage power and delay for various 
ISCAS85 benchmarks. The average error in GLC is presented for 
various percentages of average measurement errors. Overall in 
this paper, our results demonstrate that we are able to characterize 
gates with an error smaller than the measurements error.  
 
Table 3. LP-based GLC for leakage power, delay, or both, for 
five ISCAS85 different benchmarks 

Accuracy of Solvable Scaling Factor Values 
Measure  Err 1% 2% 5% 10% 
c432 Power 0.48 0.92 2.02 4.57 
c432 Delay 0.33 0.71 1.59 4.04 
c432 Both 0.14 0.71 0.98 2.63 
c499 Power 0.72 1.57 3.93 7.82 
c499 Delay 0.32 0.77 1.59 1.90 
c499 Both 0.06 0.24 1.00 1.22 
c880 Power 0.92 1.80 3.98 8.02 
c880 Delay 0.30 0.80 1.09 1.23 
c880 Both 0.08 0.69 0.92 1.20 
c1355 Power 0.88 1.71 3.47 6.62 
c1355 Delay 0.12 0.71 0.80 1.09 
c1355 Both 0.14 0.66 0.78 0.92 
c1908 Power 0.94 1.74 4.02 8.83 
c1908 Delay 0.19 0.32 0.79 0.85 
c1908 Both 0.19 0.22 0.52 0.58 

5. HTH DETECTION 
The goal of HTH detection is to identify the presence of HTHs 
and to estimate the probability of added ghost circuitry. HTH 
detection problem can be stated in many different frameworks 
that result in sharply different difficulties and false positive/false 
negative likelihoods. A key observation is that certain HTHs are 
impossible to detect without test points or analysis methods 
beyond GLC. For example, if an added gate has the same inputs 
as a gate of the same type in the original design, solely GLC 
techniques will not be able to identify it. Another important 
observation is that the difficulty of detection depends on several 
factors, such as the number and characteristics of the added gates, 
the interconnects, the measurement errors, the original design 
size, the design structure, and the number of conducted 
measurements. 
 
We conduct HTH detection using three novel techniques: (i) 
statistical analysis; (ii) constraint manipulations; and (iii) 
comparison with technological and physical laws. In the first 
technique, we analyze the variable residuals and errors in 
individual equations. For example, a systematic positive 
measurement error is a strong indicator that a ghost circuitry is 
added. In the second technique, we manipulate constraints and the 
objective function in a nonlinear program. The solver in the 
nonlinear program indicates if a ghost circuitry is present. For 
instance, we may add the same extra variable to the right side of 
each constraint. Now, if the gates can be characterized in a more 

accurate and consistent manner, it is an indicator that a malware is 
present. This example assumes that only one gate is added. 
Finally, we also compare the GLC results to the relative 
characteristics of the gates with respect to the well-established 
physical design and technological laws. For example, if two gates 
are next to each other in the original layout, but the GLC 
determines that the gates have highly different scaling factors, we 
can deduce that they are placed further than the layout 
specification and it is likely that a ghost circuitry is placed in 
between them. 
 
Once an HTH is detected, the natural next phase is to identify its 
location. We conduct HTH diagnosis using a two phase process. 
In the first phase, we identify the type of gates added and their 
position. After we determine which interconnects and gates 
receive signals and where these gates are physically located, our 
integer linear and nonlinear programming techniques can make 
the equations maximally consistent. Consistency will be achieved 
by adding gates that are not in the initial specification and by 
allowing the program to assign inputs to these gates.  In the 
second phase, we correlate the assigned inputs with the existing 
input and intermediate signal locations to identify the most likely 
location of the added gate’s signal. The high local correlation of 
sizing factors identifies the most likely HTH location using the 
maximum likelihood principle. We conducted a study of our HTH 
diagnosis technique by adding a single inverter to various 
ISCAS85 benchmarks. The inverter receives its input from a 
randomly selected gate in the benchmark and has no output to any 
of the original gates. Even if we set the measurement error to 5%, 
we were able to correctly detect/ diagnose the presence/ location 
of the inverter with higher than 98% accuracy.  
 
Table 4. Detection accuracy using a single extra variable 

% of Measurement Error Bench-
marks 1 2 5 10 

c17 100 100 100 100 
c432 100 100 100 98 
c499 100 100 100 96 
c880 100 100 100 95 
c1355 100 100 98 95 
c1908 100 100 98 94 

 
Table 4 presents the results where an extra variable is added to 
the LP constraints per measurement.  
 
Another approach we use is to examine the correlations 
between an input value(s) and the overall switching or leakage 
energy consumption and/or delay. This technique aims to 
leverage the observation that if a ghost gate is set to almost 
always use the same inputs, that input will have a significantly 
higher consumption than other sets of inputs. For all types of 
gates, this difference is a least two times higher. By fixing one 
or more inputs to a specific value and searching all 
combinations, it is very likely that there will be a subset of the 
inputs that impact the HTH with a higher probability.  
 
The main technical difficulty is to account for the unknown 
scaling factors of the gates. We address this in the following 
two ways. First, we calculate the scaling factors of the gates 
using out linear programming maximum likelihood procedure 
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