
Hardware Trojan Horse Detection
Using Gate-Level Characterization

Miodrag Potkonjak Ani Nahapetian Michael Nelson Tammara Massey
Computer Science Department

University of California, Los Angeles (UCLA)
Los Angeles, CA 90095

{miodrag, ani, tmassey}@cs.ucla.edu

ABSTRACT
Hardware Trojan horses (HTHs) are the malicious altering of
hardware specification or implementation in such a way that its
functionality is altered under a set of conditions defined by the
attacker. There are numerous HTHs sources including untrusted
foundries, synthesis tools and libraries, testing and verification
tools, and configuration scripts. HTH attacks can greatly comprise
security and privacy of hardware users either directly or through
interaction with pertinent systems and application software or
with data. However, while there has been a huge research and
development effort for detecting software Trojan horses,
surprisingly, HTHs are rarely addressed. HTH detection is a
particularly difficult task in modern and pending deep submicron
technologies due to intrinsic manufacturing variability.

Our goal is to provide an impetus for HTH research by creating a
generic and easily applicable set of techniques and tools for HTH
detection. We start by introducing a technique for recovery of
characteristics of gates in terms of leakage current, switching
power, and delay, which utilizes linear programming to solve a
system of equations created using non-destructive measurements
of power or delays. This technique is combined with constraint
manipulation techniques to detect embedded HTHs. The
effectiveness of the approach is demonstrated on a number of
standard benchmarks.

Categories and Subject Descriptors
B.7.m [Hardware]: Integrated Circuits – Miscellaneous.

General Terms
Experimentation, Security

Keywords
Hardware Trojan horses, gate-level characterization, linear
programming, manufacturing variability.

1. INTRODUCTION
Since semiconductor manufacturing demands a large capital
investment, the role of contract foundries has dramatically grown,
increasing exposure to theft of masks, attacks by insertion of
malicious circuitry, and unauthorized excess fabrication [1]. The
development of hardware security techniques is exceptionally
difficult due to reasons that include limited controllability and
observability (50,000+ gates for each I/O pin in modern designs)
[7], large size and complexity (the newest Intel processor has
2.06B transistors), variety of components (e.g., clock, clock
distribution interconnect, and finite state machine), unavoidable
design bugs, possibility of attacks by non-physically connected
circuitry (e.g., using crosstalk and substrate noise), many potential
attack sources (e.g. hardware IP providers, CAD tools, and
foundries), potentially sophisticated and well-funded attackers
(foundries and foreign governments), and manufacturing
variability that makes each IC coming from the same design
unique [5][11].

There are several broad types of malicious hardware attacks that
we consider. The first is gate resizing, where the attacker
intentionally changes the sizing factors of one or more gates in
such a way that the circuit passes all standard timing test, but its
timing for a certain inputs is incorrect or its switching or leakage
power are globally or locally increased drastically. Note that
many other gate sizing attacks can be envisioned, including one
where the sizes of the gates are altered in such a way that the
calculation of internal signals is facilitated through altered timing
or switching power. In the second type of attack, the adversary
adds one or more gates so that the functionality of the design is
altered. It is important to observe that the gates can be added so
that no timing path between primary inputs and flip-flops (FFs)
and primary outputs and FFs is altered. However, leakage power
is always altered because even if the attacker gates the added
circuitry, the gating requires an additional gate. Our HTH
detection approach is generic in a sense that it can easily be
retargeted to other circuit components, such as interconnect by
considering more comprehensive timing and/or power models.

The main technical obstacle to HTH detection is manufacturing
variability, which may have a very significant impact on timing
and power characteristics. Its difficulty is often compounded by
low controllability and observability. Our approach is non-
destructive and aims to minimize measurement test time.
Currently, we target an off-line scenario, but the approach can be
applied in the case of timing on-line. Even power-based

40.3

688

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC’09, July 26-31, 2009, San Francisco, California, USA
Copyright 2009 ACM 978-1-60558-497-3/09/07....10.00

techniques can be applied on-line by measuring the change of
timing characteristics due to rise in temperature. However, for the
sake of focus, we restrict our attention to the off-line case.

The basis for our approach is gate-level characterization using a
set of timing and/or power measurements. The measurements are
treated as a set of linear equations with imposed measurements
errors. They are processed using linear programming (LP). When
we address detection of additional ghost circuitry using LP, we
impose additional constraints on our LP formulation in such a
way that the results indicate what circuitry is added and where.
Essentially, we use LP to ask if the characterization of gates is
significantly more consistent under the assumption of added
circuitry.

Finally, it is important to observe that gate-level timing
characterization has other numerous applications beyond security.
For example, it addresses in an elegant way static timing analysis
and greatly facilitates dynamic timing analysis. It can be also used
for tailoring post-silicon optimization. For example leakage power
vectors can be calculated much more precisely when the gate
sizing information is available. Also, it can be used for
inexpensive silicon process characterization.

2. RELATED WORK
Most available hardware security, as well as hardware-based
secure system methods, are based upon implementations of digital
cryptography protocols [11]. In traditional cryptographic
protocols, security is provided by trapdoor mathematical
functions and digital keys, which make the protocols resilient to
algorithmic attacks [17]. However, digital hardware security keys
can be attacked in a number of ways including side-channel,
electromigration, imaging and fault injection [5][6].
To address the above shortcomings and vulnerabilities, a new
generation of security techniques based on manufacturing
variability (MV) has been developed [14] [15][21]. With scaling
of feature sizes, the physical limits of the devices are reached and
uncertainty in the device size increases [7]. Variations in
transistor feature sizes and thus, in gate characteristics are
inevitable (e.g., delay or power). In present and pending
technologies, the variation is large compared to the device
dimensions. As a result, VLSI circuits exhibit a high variability in
both delay and power consumption.
In contrast, the proposed new scheme does not require storing of
secret information, does not require any exchange of secret
information, and is much faster and less power expensive. Most
available hardware security, as well as hardware-based secure
system methods are based upon implementations of digital
cryptography protocols [6]. In traditional cryptographic protocols,
security is provided by trapdoor mathematical functions and
digital keys, which make the protocols resilient to algorithmic
attacks [10]. However, digital hardware security keys can be
attacked in a number of ways including side-channel,
electromigration, imaging and fault injection [3][4].

To address the above shortcomings and vulnerabilities, a new
generation of security techniques based on manufacturing
variability (MV) has been developed [8][9][12][15][16]. Note that
the manufacturing variations are because of the intense industrial
CMOS feature scaling. With scaling of feature sizes, the physical

limits of the devices are reached and uncertainty in the device size
increases [5]. Variations in transistor feature sizes and thus, in
gate characteristics are inevitable (e.g., delay or power). In
present and pending technologies, the variation is large compared
to the device dimensions. As a result, VLSI circuits exhibit a high
variability in both delay and power consumption.

3. TROJAN HORSE (HTH) ATTACK
3.1 Motivation
A Hardware Trojan Horse (HTH) is an intentional hardware
alteration of the design specification or of the corresponding
implementation. These alterations only affect the circuit’s
functionality in a few specific circumstances and are hidden
otherwise. HTHs are more difficult to detect, diagnose, and mask
than design bugs or manufacturing faults since they are
intentionally implanted to be unperceivable by the current
debugging and testing methodologies and tools. The vast number
of possibilities for implementing HTHs further complicates their
detection.

Diagnosis of HTHs can be especially intricate since a large
number of Trojans may be present simultaneously in an IC. In
addition, HTHs are not necessarily present in all ICs coming from
a design. Since HTHs are embedded within the circuit and are
active only under certain, very rare conditions, detection methods
must be complex. In addition, the introduction of new
technologies, ultra large scale integration, and intrinsic MV of
deep submicron technologies also increase the difficulty of HTH
uncovering. Implementation of HTHs by the attackers and its
detection/prevention by the designers is a battle that is only
bounded by the creativity, knowledge, and skills of each side.
Although the IC layout data is shared with the foundry, the
designers and the tool developers have the advantage of making
the first and last move. Thus, they can construct their design to be
the least suitable to HTH placement, and they can also choose the
type of post-silicon HTH detection procedure.

3.2 Example of HTH Attacks
Here we present specific HTH, in an attempt to describe the
nature of HTH attacks in general. A simple, yet powerful HTH
attack is presented in Figure 1, which shows how ghost circuitry
can be activated in a cell phone when specific inputs or data are
detected at specific memory locations. The unshaded portion of
the circuit represents the HTH circuitry when it is activated by a
HTH caller ID number. Upon activation, the attacker bitstream
(ABS) is activated and the initial cell phone design is corrupted.
In this example, HTHs will either cause the cell phones to
malfunction or cause confidential information to be leaked.
Important information can be disclosed after activation of the
HTH. The exploited phone can automatically dial a hidden spy
third party when certain numbers are dialed. Ghost circuitry
(HTH) may be difficult to identify by traditional timing/power
analysis techniques. To avoid timing analysis-based detection, an
attacker only needs to ensure that no path delays between the
inputs to flip-flops (FFs) or between the outputs to FFs are
increased. Also, the switching power can remain stable until the
trigger of the attacker’s caller ID activates the HTH.

689

Figure 1. Example of a cell phone HTH

The crosstalk caused by HTH in Figure 2 is particularly difficult
to detect since no physical connections between the ghost and the
affected circuitry is necessary. Our SPICE simulations of wire
crosstalk demonstrate that for two wires closer than 0.1
micrometers, the affected wire’s delay can increase by more than
four times, as shown in Table 1. A prevention method, during the
place and route phase, is to carefully place the nonfunctional
interconnects that fill the empty spaces to facilitate crosstalk.

Figure 2. Example of a wire crosstalk HTH

Table 1. Interconnect capacitance vs. distance of the HTH

wire
Distance 0.1 0.2 0.5 1.0

Increase (%) 420 105 34 3.2

Finally, consider an example from photonic crystals-based on-
chip optical interconnects, one the future, potentially pervasive IC
technologies. Due to its bandwidth, low power consumption, high
speed, feature size compatibility, and easy transduction to and
from electric signals, photonic crystals-based on-chip optical
interconnects are one of the leading candidates for
implementation of global on-chip interconnects [13]. However, if
an attacker places a single transducer on the optical fiber, data

being communicated on the high bandwidth channel can be
interfered/obtained with no timing or electromagnetic impact.

3.3 HTH Classification
In the modern design flows of ASICs, ASIPs, and
microprocessors, most of the phases may be potentially untrusted
[1]. CAD tools, hardware intellectual properties (IPs), design
libraries, testing and verification tools, untrusted foundries,
untrusted testing facilities, and even untrusted designers in large
design teams are all possible malicious threats. With field
programmable gate arrays (FPGAs), the situation is even worse
because the software and configuration files can also be attacked.

Even though the number and types of potential hardware attacks
are essentially unlimited, we currently classify HTH attacks into
the seven following categories: (i) damage objectives; (ii)
components and mechanisms of the attack; (iii) components of the
IC under attack; (iv) duration and initiation mechanisms; (v)
design phase implantation and usage phase; (vi) optimization
level; and (vii) customization level.

The HTH attackers desiderata may include alteration of the
computed results, slowing the IC, increasing the power
consumption, releasing confidential data, and facilitating side-
channel attacks by making the gates’ power consumptions
observable at output. Attackers can employ various techniques
including excessive switching, interconnect resizing, and
substrate noise addition. Components, such as gates, clocks, and
memory are vulnerable to physical attacks. Attacks may be
randomly or actively initiated, e.g., event triggered. The impact
may be temporary/permanent or recoverable/unrecoverable. The
effectiveness and the detection difficulty of attacks can be
quantitatively optimized. The attack may be on a specific weak IC
component or on a predetermined set of components. For
example, incorrectly sized gates are very slow on the design’s
critical path. Sizing variations caused by MV in ICs may be
exploited for this attack. Unfortunately, the broad spectrum of
possible attacks prevents the development of universally effective
defense and protection measures. To mitigate this problem, our
research work develops generic hardware security techniques that
can easily be retargeted to new tasks.

We focus on detecting the differences between the taped-out
chip’s characteristics and post-silicon tests. We also address the
more difficult HTH discovery problems where the malware is
implanted within the hardware intellectual property (IP), cell and
module libraries, CAD tools, and FPGA configuration software.

3.4 Global Flow
To carry out HTH detection, we first carry out gate-level
characterization, by using non-destructive leakage power and
timing delay measurements to create linear programs. Once, the
scaling factor of all or most of the gates in the IC have been
approximated, then we are able to carry out a suite of statistical
techniques for determining the presence of HTHs.

4. GATE-LEVEL CHARACTERIZATION
Gate-level characterization (GLC) aims to recover the post-silicon
and unique properties of each IC in the presence of manufacturing
variability. GLC calculates the relevant characteristics of each
gate of the design using a limited number of nondestructive

690

measurements. We currently target delay, switching power, and
leakage measurements and use GLC on combinatorial gates.
However, other options such temperature and response to
radiation may be also used for this approach. Even though we
currently consider only combinatorial gates, one can generalize
our techniques and easily apply our approach to sequential
elements and interconnects. Due to space limitations and for the
sake of clarity, we discuss the simple structure of GLC applied to
leakage power, in this section. The key observations are that each
gate consumes an energy that is proportional to its manufacturing
variability scaling factor, si. Each gate gi depends on its input.
Table 2 demonstrates this for a two input NAND gate for 90
nanometer technologies.

Table 2. Leakage current for different inputs

Input Vector 00 01 10 11

NAND-2 Leakage 0.776 10.39 4.137 15.15

GLC leakage characterization can be formulated as a set of linear
equations. We assume that the design structure is known. Given
an IC with n gates and m input pins, K different input vectors can
be applied (K << 2m). The total leakage current is measured for
each input vector. The goal is to find the scaling (sizing) factor for
each gate’s leakage. The stated problem is an over-constrained
system of linear equations. Each equation has the form:

�
�

�
n

j

total
k

nom
jkj IIs

1
,

ˆ

where is the nominal leakage power for gate j for the input

vector k, is the total measured leakage current for the k-th
input that is the sum of the correct value and a measurement error.

nom
jkI ,

total
kÎ

Depending on the choice of optimization objective function, the
above problem can be stated in a linear, convex, or nonlinear
program format. First, each equation is transformed into a
constraint where the difference of the left and the right side of
equation is less than |�k| for the k-th equation. The objective is to
minimize an appropriate error norm defined over the K error

terms, �k’s, e.g., the l1 error norm is | , that can be

linearly stated by a set of auxiliary variables �k as

�
�

k

k
k

1
| �

�
�

�
k

k
k

1
, s.t., kk ��� and kk ���� .

The stated system of equations can be optimally solved using
linear programming. The relative advantages of linear, convex,
and nonlinear programs are that they provide a fine trade-off
between accuracy, run time, and modeling flexibility. While
linear programming (LP) is fast, it assumes piece-wise linear error
models. On the other hand, while non-linear programming is slow
and has potential convergence problems, it can fit nonlinear error
norms and, more importantly, handle non-linear scaling and
leakage power models. There are two major potential difficulties
with solving the system of equations with linear, convex, or non-
linear programs. The first is that two or more scaling variables

can be correlated in all equations and thus one cannot find their
actual values. The second is that the large circuits cannot be
solved in a reasonable amount of time.

To resolve the above concerns and also to address several others,
we created a more elaborate GLC flow. Our current GLC flow has
five phases that are embedded within a loop that terminates once
the user defined accuracy criteria is satisfied or the runtime limit
is reached. The five phases are:
(i) measurement organization;
(ii) equation analysis and selection;
(iii) solving system of equations;
(iv) results post-processing;
and (v) results validation.

First, we select the input vectors. In the case of delay
measurements, we also decide on relative input arrival times.
Second, we analyze the equations (constraints) that maximize the
corresponding matrix rank to solve for the maximal number of
scaling variables in a numerically stable manner. Third, we
derived several heuristics for the task, which we use. Fourth, after
the equations are solved for different input vectors, we combine
their solutions to minimize the probability of large errors. Finally,
learn-and-test and resubstitution statistical validation techniques
are used to estimate bounds for the calculated scaling factors.

4.1 Gate-Level Characterization using Linear
Programming (LP)
In evaluating the LP formulation for gate-level characterization,
we studied three properties of input variables: (i) distribution
type, (ii) the mean of the absolute measurement errors, and (iii)
the number of constraints.

0

2

4

6

8

10

12

200 1000 2000 4000
Number of Constraints

C
ha

ra
ct

er
iz

at
io

n
A

cc
ur

ac
y:

 A
ve

ra
ge

 %

di
ff

er
en

ce
 w

ith
 a

ct
ua

l s
ca

lin
g

fa
ct

or
s

Figure 3. Accuracy of the gate-level characterization vs. the
relative measurement error (%) for different number of
constraints (equations) on c432 benchmarks

In Figure 3, we evaluate the accuracy of the gate characterization
procedure versus the uniform measurement error and the number
of constraints (NC) the c432 benchmark. The number of
constraints refers to the number of equations that we used in the

691

LP, corresponding to the number of different inputs used to
measure the leakage. We see that even though increasing the NC
on average improves the accuracy, there exists some cases where
with NC=2000 there is more accuracy than with NC=4000,
because of the random variations in the subset of used equations.

Table 3 presents the results for LP-based GLC using leakage
power, delay, and both leakage power and delay for various
ISCAS85 benchmarks. The average error in GLC is presented for
various percentages of average measurement errors. Overall in
this paper, our results demonstrate that we are able to characterize
gates with an error smaller than the measurements error.

Table 3. LP-based GLC for leakage power, delay, or both, for
five ISCAS85 different benchmarks

Accuracy of Solvable Scaling Factor Values
Measure Err 1% 2% 5% 10%
c432 Power 0.48 0.92 2.02 4.57
c432 Delay 0.33 0.71 1.59 4.04
c432 Both 0.14 0.71 0.98 2.63
c499 Power 0.72 1.57 3.93 7.82
c499 Delay 0.32 0.77 1.59 1.90
c499 Both 0.06 0.24 1.00 1.22
c880 Power 0.92 1.80 3.98 8.02
c880 Delay 0.30 0.80 1.09 1.23
c880 Both 0.08 0.69 0.92 1.20
c1355 Power 0.88 1.71 3.47 6.62
c1355 Delay 0.12 0.71 0.80 1.09
c1355 Both 0.14 0.66 0.78 0.92
c1908 Power 0.94 1.74 4.02 8.83
c1908 Delay 0.19 0.32 0.79 0.85
c1908 Both 0.19 0.22 0.52 0.58

5. HTH DETECTION
The goal of HTH detection is to identify the presence of HTHs
and to estimate the probability of added ghost circuitry. HTH
detection problem can be stated in many different frameworks
that result in sharply different difficulties and false positive/false
negative likelihoods. A key observation is that certain HTHs are
impossible to detect without test points or analysis methods
beyond GLC. For example, if an added gate has the same inputs
as a gate of the same type in the original design, solely GLC
techniques will not be able to identify it. Another important
observation is that the difficulty of detection depends on several
factors, such as the number and characteristics of the added gates,
the interconnects, the measurement errors, the original design
size, the design structure, and the number of conducted
measurements.

We conduct HTH detection using three novel techniques: (i)
statistical analysis; (ii) constraint manipulations; and (iii)
comparison with technological and physical laws. In the first
technique, we analyze the variable residuals and errors in
individual equations. For example, a systematic positive
measurement error is a strong indicator that a ghost circuitry is
added. In the second technique, we manipulate constraints and the
objective function in a nonlinear program. The solver in the
nonlinear program indicates if a ghost circuitry is present. For
instance, we may add the same extra variable to the right side of
each constraint. Now, if the gates can be characterized in a more

accurate and consistent manner, it is an indicator that a malware is
present. This example assumes that only one gate is added.
Finally, we also compare the GLC results to the relative
characteristics of the gates with respect to the well-established
physical design and technological laws. For example, if two gates
are next to each other in the original layout, but the GLC
determines that the gates have highly different scaling factors, we
can deduce that they are placed further than the layout
specification and it is likely that a ghost circuitry is placed in
between them.

Once an HTH is detected, the natural next phase is to identify its
location. We conduct HTH diagnosis using a two phase process.
In the first phase, we identify the type of gates added and their
position. After we determine which interconnects and gates
receive signals and where these gates are physically located, our
integer linear and nonlinear programming techniques can make
the equations maximally consistent. Consistency will be achieved
by adding gates that are not in the initial specification and by
allowing the program to assign inputs to these gates. In the
second phase, we correlate the assigned inputs with the existing
input and intermediate signal locations to identify the most likely
location of the added gate’s signal. The high local correlation of
sizing factors identifies the most likely HTH location using the
maximum likelihood principle. We conducted a study of our HTH
diagnosis technique by adding a single inverter to various
ISCAS85 benchmarks. The inverter receives its input from a
randomly selected gate in the benchmark and has no output to any
of the original gates. Even if we set the measurement error to 5%,
we were able to correctly detect/ diagnose the presence/ location
of the inverter with higher than 98% accuracy.

Table 4. Detection accuracy using a single extra variable

% of Measurement Error Bench-
marks 1 2 5 10

c17 100 100 100 100
c432 100 100 100 98
c499 100 100 100 96
c880 100 100 100 95
c1355 100 100 98 95
c1908 100 100 98 94

Table 4 presents the results where an extra variable is added to
the LP constraints per measurement.

Another approach we use is to examine the correlations
between an input value(s) and the overall switching or leakage
energy consumption and/or delay. This technique aims to
leverage the observation that if a ghost gate is set to almost
always use the same inputs, that input will have a significantly
higher consumption than other sets of inputs. For all types of
gates, this difference is a least two times higher. By fixing one
or more inputs to a specific value and searching all
combinations, it is very likely that there will be a subset of the
inputs that impact the HTH with a higher probability.

The main technical difficulty is to account for the unknown
scaling factors of the gates. We address this in the following
two ways. First, we calculate the scaling factors of the gates
using out linear programming maximum likelihood procedure

692

[6] D. Hwang, P. Schaumont, K. Tiri, and I. Verbauwhede.
Securing embedded systems. IEEE Security & Privacy,
4(2):40–49, 2006.

for gate characterization. Then, we can compare the expected
energy for various input vectors and find that there is a
consistent bias due to the HTH. The second technique iterates
the first technique by perturbing the scaling factors in order to
address uncertainty about the actual gate scaling factors.

[7] N.K. Jha and S. Gupta. Testing of Digital Systems.
Cambridge University Press, 2003.

[8] F. Koushanfar and M. Potkonjak. CAD-based security,

cryptography, and digital rights management.In Design
Automation Conference (DAC), 2007.

6. CONCLUSION
We have developed a system of techniques for two major classes
of hardware Trojan horse detection and diagnosis: gate resizing
and embedding of ghost circuitry. The techniques are non-
destructive and apply a system of delay or power measurements
followed by singular value decomposition and linear
programming (LP) processing. The final step is either statistical
data analysis or the more effective addition of LP constraints. The
effectiveness of the approaches is demonstrated on a number of
benchmarks.

[9] K. Lofstrom, W.R. Daasch, and D. Taylor. IC identification
circuits using device mismatch. In International Solid State
Circuits Conference (ISSCC), pages 372–373, 2000.

[10] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook
Of Applied Cryptography. CRC Press, 1997.

[11] A. Srivastava, D. Sylvester, and D. Blaauw. Statistical
Analysis and Optimization for VLSI: Timing and Power.
Series on Integrated Circuits and Systems. Springer, 2005.

7. REFERENCES [12] Y. Su, J. Holleman, and B. Otis. A 1.6J/bit stable chip ID
generating circuit using process variations. In International
Solid State Circuits Conference (ISSCC), page to appear,
2007.

[1] Defense Science Board (DSB) study on high performance
microchip supply, http://www.acq.osd.mil/dsb/reports/2005-
02-hpms report final.pdf, 2006.

[2] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B.
Sunar. Trojan detection using ic fingerprinting. In IEEE
Symposium on Security and Privacy (SP), pages 296–310,
2007.

[13] G. Suh and S. Devadas. Physical unclonable functions for
device authentication and secret key generation. In Design
Automation Conference (DAC), pages 9–14, 2007.

[14] E. Yablonovitch. Can nano-photonic silicon circuits become
an intra-chip interconnect technology? In IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD), pages 309–309, 2007.

[3] R. Anderson, M. Bond, J. Clulow, and S. Skorobogato.
Cryptographic processors-a survey. Proceedingsof the IEEE,
94(2):357–369, 2006.

[4] R.J. Anderson. Security Engineering: A guide to building
dependable distributed systems. John Wiley and Sons, 2001. [15] M. Nelson, A. Nahapetian, F. Koushanfar, M. Potkonjak.

SVD-based Ghost Circuitry Detection. In Information
Hiding (IH), 2009. [5] K. Bernstein, D.J. Frank, A.E. Gattiker, W. Haensch, B.L. Ji,

S.R. Nassif, E.J. Nowak, D.J. Pearson, and N.J. Rohrer.
High-performance CMOS variability in the 65-nm regime
and beyond. IBM Journal of Research and Development,
50(4/5):433–450, 2006.

[16] R. Rad, X. Wang, J. Plusquellic, and M. Tehranipoor.
Taxonomy of Trojans and Methods of Detection for IC
Trust. In International Conference on Computer-Aided
Design (ICCAD), 2008.

693

